SANCIONAL SECTIONAL SECTIO

UNIVERSIDAD NACIONAL DEL COMAHUE

Centro Regional Universitario Bariloche

Año Académico: 2016

ASIGNATURA: GEOMETRÍA EUCLIDIANA

DEPARTAMENTO: MATEMÁTICA **ÁREA**: ÁLGEBRA Y GEOMETRÍA **ORIENTACIÓN**: GEOMETRÍA

CARRERA/S: Profesorado Universitario en Matemática

PLAN/ES DE ESTUDIOS - 1467/14

CARGA HORARIA SEMANAL: 6 hs

RÉGIMEN: anual

CUATRIMESTRE: OPTATIVA

EQUIPO DE CATEDRA:

Apellido y Nombres	Cargo.
Ferrero, María Martha	PAD2
Cifuentes Ampuero, Marcela Alejandra	AYP1

ASIGNATURAS CORRELATIVAS (S/Plan de Estudios):

PARA CURSAR:

- Geometría Analítica
 - Algebra I

PARA RENDIR EXAMEN FINAL:

Matemática General

Introduccion al Quehacer Matemático

1. FUNDAMENTACION:

La Geometría Euclídea es presentada de acuerdo a la axiomática de Euclides, en la versión "actualizada" por Hilbert en los comienzos del siglo XX, que incorpora con mucho peso los axiomas de congruencia. Esto nos lleva a la posibilidad de trabajar algebraicamente las transformaciones rígidas, cuya estructura con la composición provee de uno de los más ricos ejemplos de teoría de grupos y, en particular, de grupos finitos. Asimismo se da una apertura a la integración temática de las distintas ramas de la Matemática.

En esta geometría, en la que el universo es el espacio, cada plano será uno de ciertos subconjuntos especiales. En ellos, varios de los axiomas estudiados en la geometría del plano se convertirán en propiedades demostrables.

Toma especial relevancia en esta materia la habilidad de visualización, es decir de interpretación geométrica de las situaciones o problemas planteados, con el apoyo de construcciones de cuerpos con distintos materiales y soporte informático.

2. OBJETIVOS - PROPOSITOS:

Que los estudiantes logren:

- ° aprender los contenidos de la Geometría Métrica tanto conceptuales como procedimentales, del método matemático entendido como un proceso de obtención del conocimiento.
 - °_generar la actitud de "hacer" matemática
- ° desarrollar la capacidad de elaborar estrategias para resolver problemas y permitir su posterior formalización.
- ° comprender la importancia de las transformaciones en geometría, ubicándola así en el contexto histórico en que se encuentra.
- ° ser capaces de discutir definiciones, axiomas, conjeturas, etc, a fin de introducir el estudio de los Fundamentos de la Geometría.
 - ° elaborar estrategias para la argumentación lógica
 - ° un muy buen manejo de la demostración.

3. CONTENIDOS SEGÚN PLAN DE ESTUDIOS (Correspondientes a las materias Geometría Euclideana del Plano y Geometría Euclideana del Espacio del PROFESORADO EN MATEMATICA):

- Objeto de la geometría. Axiomática de Hilbert.
- Transformaciones rígidas en el espacio: Movimientos y congruencia.
- Polígonos, poliedros, circunferencias, cuerpos redondos y sus propiedades.
- Teselados del plano y del espacio. Número de oro y polígonos estrellados.
- Grafos y poliedros. Homotecia y semejanza. Inversión y proyecciones.
- Áreas y volúmenes.
- El plano de Poincaré y geometría en la superficie esférica.
- Geometrías no euclidianas.

4. CONTENIDO PROGRAMA ANALÍTICO:

- I Introducción. Axiomas de enlace, ordenación y paralelismo en el plano. Conjunto convexo. Rectas secantes y no secantes. Ángulos. Polígonos. Propiedades y ejercicios. Orientación en el plano. Ordenación de un haz de semirrectas en un plano y orientación inducida en el mismo.
- II Transformaciones rígidas en el plano. Axiomas de rigidez. Grupo de transformaciones rígidas. Congruencia. Punto medio de un segmento. Rectas perpendiculares. Mediatriz de un segmento y bisectriz de un ángulo. Distancia.
- III Simetría axial. Propiedades. Simetría central. Propiedades. Traslaciones en el espacio. Propiedades. Conjunto de traslaciones como subgrupo abeliano (con la composición) del grupo $(\tau(\pi),0)$. Rotaciones. Reflexión deslizante. Clasificación de las transformaciones rígidas en el plano. Teselados.
- IV Axiomas de enlace, ordenación y paralelismo en el espacio. Rectas secantes y no secantes. Recta y plano secantes. Recta paralela a un plano. Planos secantes y planos paralelos. Propiedades y ejercicios. Ángulos en el espacio. Diedro: interior y sector angular. Triedro y ángulo poliédrico: interior y sector angular. Poliedros convexos: interior y cuerpo poliédrico. Teorema de Jordan. Poliedros simples. Teorema de Euler. Poliedro euleriano. Poliedros regulares. Ejercicios.
- V Transformaciones rígidas en el espacio. Axiomas de rigidez. Grupo de transformaciones rígidas. Congruencia. Distancia. Rectas perpendiculares. Plano de mediatrices. Plano perpendicular a una recta. Rectas perpendiculares alabeadas. Planos perpendiculares. Sección recta de un diedro: propiedad referida a las secciones rectas. Semiplano bisector. Ejercicios.

VI - Simetría en el espacio. Simetría axial. Propiedades. Simetría central. Propiedades. Simetría especular. Propiedades. Eje, centro y plano de simetría de subconjuntos de E. Ejercicios. Traslaciones en el espacio. Propiedades. Estudio de las restricciones de las traslaciones a los planos dobles. Ejercicios.

VII - Rotaciones en el espacio. Propiedades. Estudio de las restricciones de una rotación a los planos dobles. Un teorema del plano referido a rotaciones. Teorema del punto fijo. Producto de rotaciones con traslaciones y simetrías. Reflexión deslizante y reflexión rotada (o rotorreflexión). Propiedades. Distintas composiciones de las transformaciones rígidas estudiadas. Clasificación y caracterización de las transformaciones rígidas. Ejercicios.

VIII - Axioma de continuidad. Longitud de un segmento. Homotecia y semejanza. Proporción aúrea. Perímetro y área de figuras planas. Teorema que identifica todas las aplicaciones que preservan longitudes. Áreas y volumen de poliedros. Área y volumen de la esfera, el cono y el cilindro. Ejercicios.

IX – Introducción histórica a las Geometrías no Euclidianas. Plano de Poincaré. Geometría Fractal y Grafos como ejemplos de Otras Geometrías posibles.

5. BIBLIOGRAFÍA BASICA CONSULTA:

TITULO: "ESPACIO - Geometría Métrica".

AUTOR (ES): FERRARIS, C.:

EDITORIAL: Universidad Nacional del Comahue

EDICION: 1991 BIBLIOTECA: SI

TITULO: " "El Plano".
AUTOR (ES): TIRAO, J. A.
EDITORIAL: Docencia

EDICION: 1978 BIBLIOTECA: SI

BIBLIOGRAFÍA CONSULTA:

COXETER, H.: "Fundamentos de Geometría".

EVES, H.: "Estudio de las Geometrías".

PUIG ADAMS, P.: "Curso de geometría Métrica" (tomos I y II).

SANTALO, L. A.: "Geometrías no euclideanas".

SANTALO, L. A.: "La Matemática en la Escuela Secundaria".

6. PROPUESTA METODOLOGICA:

Las clases consistirán en una introducción teórica de los temas a tratar, con participación de los alumnos en algunas discusiones sobre temas de interés (definiciones, orden de los conceptos tratados, axiomas, etc.), preferiblemente después de concluida la misma, y luego se resolverán problemas propuestos en una guía de trabajos. Se dedicará a cada instancia aproximadamente la mitad del tiempo previsto para la asignatura. Para la resolución de problemas se estimulará la formación de grupos. Se incluirán actividades exploratorias y de resolución de problemas con soporte informático.

7. EVALUACIÓN Y CONDICIONES DE ACREDITACION:

ALUMNOS REGULARES:

La evaluación del trabajo de cátedra se realizará en base al registro permanente de lo actuado y la acreditación resultará de cuatro parciales, dos de los cuales se aprueban con el 60% de los ejercicios resueltos en forma correcta y los otros dos son domiciliarios, con informe escrito y con una instancia de exposición . Los parciales que no hayan sido aprobados, contarán con un recuperatorio respectivo por escrito, que se aprueba con al menos el 60% de los ejercicios realizados en forma correcta. El examen final consistirá en la resolución de dos o tres problemas integradores a resolver por escrito, y un tema a elección de cada alumno que será expuesto (comentado o "defendido") ante profesores del área.

ALUMNOS PROMOCIONALES: El régimen de promoción consistirá en la aprobación de los cuatro exámenes con nota superior a 80% y la entrega de algún dispositivo que será sumado a la Muestra Interactiva de Geometría promovida desde esta cátedra.

ALUMNOS LIBRES: El examen libre consta de una parte teórica con al menos un ejercicio por unidad y una parte oral en que el alumno expondrá un tema a elección y el tribunal realizará las preguntas que considere pertinentes.

DISTRIBUCIÓN HORARIA: 8.

HORAS TEORICOS: Lunes de 13 a 16 HORAS PRACTICOS: Jueves de 13 a 16

CRONOGRAMA TENTATIVO: 9.

Primer parcial: 20 de abril de 2016

Segundo parcial domiciliario: entrega 23 de mayo de 2016,

defensa 3 de junio de 2016

Tercer parcial: 5 de septiembre de 2016

Cuarto parcial domiciliario:

entrega 16 de noviembre de 2016, defensa 21 de noviembre de 2016

CONFORMIDAD Coordinador Area Algebra DEPARTAMENTO Matematica

Secretaria Académica

Secretaria Academica
Centro Regional Universitario Bariloche
Conformidad Nacionalii del Comahue
CONFORMIDAD SECRETARIA ACADEMICA

CENTRO REGIONAL UNIVERSITARIO BARILOCHE